Передаточное отношение многоступенчатых передач

Автомобили

Читайте также:

  1. A) Соотношение с ЕКПЧ
  2. Gкс — группа показателей прочности защиты информации в каналах связи системы передачи информации (кроме абонентского шифрования).
  3. He является препятствием рас­хождение в отношении ккауза» передачи и получения.
  4. HTTP post — метод, разработанный для передачи больших объемов информации по протоколу HTTP.
  5. IV. Отношение АК к нагреванию
  6. PI Section Line – линия электропередачи с сосредоточенными параметрами.
  7. SMTP soml — команда непосредственной или почтовой (Send Or Mail) передачи сообщения.
  8. XV. Передача христианской вести: вопрос к священникам и учителям
  9. Алгоритм расчета геометрии передачи.
  10. Будущее человечества. Отношение к природе и глобальные проблемы
  11. Взаимное отношение сторон
  12. Взаимоотношение объектных и субъектных аспектов гуманитарного и психологического образования человека

Кинематика многоступенчатых передач с неподвижными осями

В простой зубчатой передаче, состоящей из двух находящихся в зацеплении колес, при внешнем зацеплении колеса вращаются в разные стороны, поэтому передаточное отношение (14.4) отрицательное, а в передаче с внутренним зацеплением передаточное отношение положительное, т.е.

где знак «–» принимают при внешнем зацеплении колес, знак «+» – при внутреннем.

Передаточное отношение, которое можно воспроизвести одной парой зубчатых колес (исключая червячную передачу) невелико, так как минимальное и максимальное значения чисел зубьев колес ограничены и лимитируются определенными технологическими факторами. При необходимости получения больших передаточных отношений применяют сложные зубчатые механизмы, состоящие из нескольких простых цилиндрических, конических, червячных зубчатых механизмов, соединенных последовательно, т.е. применяют многоступенчатую передачу. Передача вращающего момента осуществляется последовательно с одного вала на другой через зубчатые колеса, причем на каждом промежуточном валу размещают по два колеса, одно из которых является ведомым по отношению к предыдущему, другое – ведущим по отношению к последующему.

б
а

Рис. 14.12

Рассмотрим плоский ступенчатый зубчатый механизм (рис. 14.12, а), представляющий собой последовательное соединение нескольких простых механизмов. На каждом промежуточном валу находится не менее двух колес, зацепляющихся соответственно с колесами предыдущего и последующего валов. Ведущим является колесо 1, общее передаточное отношение всего механизма i1n = ω1n, где ω1, ωn – соответственно скорости вращения ведущего и выходного n-го звена. Выразим, пользуясь зависимостью (14.8), передаточные отношения простых механизмов, состоящих из одной пары колес, находящихся в зацеплении i12 = ω12 = –z2/z1; i23 = ω23 = –z3/z2′ и т.д. Перемножим полученные соотношения i12∙i23∙…∙i(n–1)n = (ω12)∙(ω23)∙…´
´ (ωn–1n) = ω1n, но ω1n = i1n, поэтому

т.е. передаточное отношение многоступенчатой передачи равно произведению передаточных отношений всех простых зубчатых передач, входящих в механизм. Зависимость (14.9) можно выразить через числа зубьев колес. Для схемы, представленной на рис. 14.12, а, она примет вид

где z1,z2′,…,zn – числа зубьев колес передачи; k – число внешних зацеплений. Множитель (–1) k позволяет определить знак передаточного отношения сложного многоступенчатого механизма, т.е. направление вращения выходного звена по отношению к направлению вращения ведущего.

При передаче движения с малым передаточным отношением между валами, находящимися на большом расстоянии друг от друга для уменьшения габаритов передачи или для получения требуемого направления вращения выходного звена применяют последовательное соединение нескольких пар единичных зубчатых колес (рис. 14.12, б), так называемые рядовые зубчатые механизмы. Полное передаточное отношение такой передачи (14.9) через известные числа зубьев колес равно i1n = ω1n = (–1) k (zn/z1), где z1, zn – числа зубьев ведущего и выходного колес. Промежуточные колеса влияют только на знак, но не величину передаточного отношения механизма, их называют паразитными.

Когда необходимо передавать движение между пересекающимися или между скрещивающимися осями, используют пространственные многозвенные зубчатые механизмы с применением конических или червячных передач.

Дата добавления: 2014-11-29 ; Просмотров: 2991 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Лабораторная работа №14

Определение передаточных отношений зубчатых передач

Цель работы – изучить различные виды зубчатых передач, научиться определять тип и вид зубчатых передач, их передаточные отношения и передаточные числа.

Зубчатая передача – трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, образующими с неподвижным звеном вращательную или поступательную пару (рис.1).

Рис.1. Зубчатая передача с внешним зацеплением

Парное зубчатое колесо — зубчатое колесо передачи, рассматриваемое по отношению к другому зубчатому колесу данной передачи. Зубчатое колесо 2 (рис.1) является парным колесу 1, зубчатое колесо 1 парное колесу 2.

Шестерня – зубчатое колесо передачи с меньшим числом зубьев.

Колесо – зубчатое колесо передачи с большим числом зубьев.

Передаточное отношение зубчатой передачи – это отношение угловой скорости ведущего зубчатого колеса к угловой скорости ведомого зубчатого колеса .

Ведущее зубчатое колесо – зубчатое колесо передачи, которое сообщает движение парному зубчатому колесу.

Ведомое зубчатое колесо — зубчатое колесо передачи, которому сообщает движение парное зубчатое колесо.

Передаточное отношение u 12 (иногда используется обозначение i 12 ) определяется при ведущем колесе 1, передаточное отношение u 21 определяется если ведущим является колесо 2:

u 12 =± ω 1 ω 2 =± n 1 n 2 ,

u 21 =± ω 2 ω 1 =± n 2 n 1 .

Рис.2. Виды зубчатых зацеплений: внешнее (слева) и внутреннеее

Передаточное число зубчатой передачи – это отношение числа зубьев ведомого зубчатого колеса к числу зубьев ведущего колеса. Передаточное число зубчатой передачи определяется по формуле:

u 12 =± z 2 z 1 и u 21 =± z 1 z 2 ,

где z 1 и z 2 — числа зубьев колес 1 и 2, соответственно.

Знак «+» берется для внешнего зацепления (рис.1 и рис.2), знак «–» для внутреннего зацепления. Виды зацеплений приведены на рис.2. Знаки учитываются только для зубчатых передач с параллельными осями вращения колес.

Читайте также:  Устройство отопителя ваз 21214

Типы зубчатых передач

Цилиндрическая зубчатая передача (показана на рис.3, ее кинематическая схема – на рис.1) — зубчатая передача с параллельными осями, у зубчатых колес которой аксоидные, начальные и и делительные поверхности цилиндрические. В этих передачах относительное расположение осей вращения колес определяется только межосевым расстоянием.

Аксоидная поверхность зубчатого колеса – каждая из поверхностей, описываемых мгновенной осью относительного движения зубчатых колес передачи, относящаяся к данному зубчатому колесу. В цилиндрической и конической передачах начальные поверхности совпадают с аксоидными.

Коническая зубчатая передач (показана на рис.3) — зубчатая передача с пересекающимися осями, у зубчатых колес которой аксоидные, начальные и и делительные поверхности конические. В этих передачах относительное расположение осей вращения колес определяется только углом между осями.

Ортогональная зубчатая передача (показан на рис.3) – коническая зубчатая передача, угол между осями которой равен 90°.

Неортогональная зубчатая передача – коническая зубчатая передача, угол между осями которой отличен от 90°.

Рис.3. Типы зубчатых передач (слева), коническая (в центре), винтовая зубчатая передача

Зубчатая передачи со скрещивающимися осями вращения колес (рис.3) — зубчатая передача, в которой относительное расположение осей вращения колес определяется межосевым расстоянием и углом между осями. Существует много вариантов таких механизмов. На рис.3 показана винтовая зубчатая передача, угол между осями которой составляет 90 °. Другой вариант передачи с углом между осями в 90 ° — червячная передача (рис.4). Шестерня червячной передачи называется червяком (поз.1 на рис.4) , а колесо – червячным колесом (поз.2 на рис.4) . Вторая передача, показанная на рис.4, называется гиперболоидной. Аксоиды ее зубчатых колес – однополостные гипеболоиды вращения.

Для конических зубчатых передач и передач со скрещивающимися осями передаточное отношение определяется по тем же формулам, что и для цилиндрических передач, но без учета знаков.

Рис.4. Червячная (слева) и гиперболоидная зубчатая передача

Виды зубчатых колес

Рис.5. Виды зубчатых колес: цилиндрическое косозубое (слева), шевронное (в центре),

В зависимости от вида зубьев зубчатые колеса цилиндрических передач делятся на прямозубые (рис.3 слева), косозубые и шевронные (рис.5). Зубчатые колеса конических передач – на прямозубые (рис.5), тангенциальные, с круговым зубом (рис.3 в центре), с криволинейным зубом.

В зависимости от профиля зубьев зубчатые колеса и передачи делятся на эвольвентные (рис.2, рис.6), циклоидальные, зубчатые колеса цилиндрической передачи Новикова (рис.6), профили зубьев которой контактируют по дуге окружности.

Рис.6. Виды зубчатых колес: с эвольвентным профилем зубьев (слева),

зубчатые колеса передачи Новикова

МНОГОСТУПЕНЧАТЫЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ

Зубчатые передачи с неподвижными осями вращения колес

Рис.7. Двухступенчатая зубчатая передача и ее кинематическая схема

Простейший зубчатый механизм (рис.1) состоит из двух зубчатых колес ведущего и ведомого, которые одновременно являются входным и выходным, соответственно. Для получения необходимых передаточных отношений в машинах и приборах часто применяют сложные зубчатые механизмы, имеющие кроме входного и выходного колес несколько промежуточных колес, каждое из которых вращается вокруг своих осей. Применение сложных механизмов объясняется различными причинами. Например, оси входного и выходного колес расположены далеко друг от друга. В этом случае непосредственная передача вращения при помощи двух колес потребовала бы создания передачи с большими габаритами. В другом случае передаточное отношение может быть очень велико или очень мало, тогда удобно между входным и выходным колесами иметь промежуточные колеса со своими осями. Передавая вращение с входного колеса на промежуточные колеса и с них на выходное колесо, мы как бы последовательно отдельными ступенями изменяем скорость вращения звеньев, получая в результате требуемые передаточные отношения между входным и выходным колесами.

Таким образом, сложный механизм передачи можно разделить на отдельные части – ступени, каждая из которых представляет собой два колеса, образующих зубчатое зацепление. В соответствии с указанным бывают одно- и многоступенчатые передачи, по большей части двух- и трехступенчатые (рис.7). Количество ступеней равно числу зубчатых зацеплений, образованных зубчатыми колесами механизма. Одно колесо может входить в несколько ступеней (рис.8). Любая ступень может представлять собой цилиндрическую, коническую, червячную, глобоидную и т.д. передачу. На рис.8 показан многоступенчатый механизм, содержащий цилиндрические и конические ступени.

Рис.8. Многоступенчатая зубчатая передача

с паразитными колесами

Общее передаточное число (отношение) зубчатой передачи при последовательном соединении ступеней равно произведению передаточных чисел входящих в них ступеней. Для передачи на рис.7:

u 12 = u 12 ∙ u 34 = — z 2 z 1 ∙ — z 4 z 3 = z 2 z 1 ∙ z 4 z 3 .

Зубчатые колеса, числа зубьев которых не влияют на общее передаточное отношение механизма, называются паразитными колесами . Для четырехступенчатой передачи, показанной на рис.8, передаточное число равно:

u 16 = u 12 ∙ u 23 ∙ u 45 ∙ u 56 = z 2 z 1 ∙ z 3 z 2 ∙ z 5 z 4 ∙ z 6 z 5 = z 3 z 1 ∙ z 6 z 4 .

Знаки ступеней не учитываются так как передача включает кроме цилиндрических и конические ступени. Зубчатые колеса с числами зубьев z 2 и z 5 являются паразитными, каждое из них входит в два зубчатых зацепления.

Планетарные зубчатые передачи

В некоторых многоступенчатых зубчатых передачах оси отдельных колес являются подвижными. Такие зубчатые механизмы с одной степенью свободы называются планетарными механизмами (рис.9) , а с двумя и более степенями свободы – дифференциальными механизмами или просто дифференциалами. В этих механизмах колеса с подвижными осями вращения называются сателлитами (звено 2 на рис.9) , а звено, в котором установлены сателлиты — водилом. На схемах водило принято обозначать буквой Н. Зубчатые колеса, оси которых совпадают с осью вращения водила, назыаются центральными (звенья 1 и 4 на рис.9). Сателлиты бывают одновенцовые (левый рисунок) и многовенцовые.

Читайте также:  Крышка коробки передач т 25

Передаточное число планетарного механизма определяется по формуле:

u 1 H (4) =1- u 14 H ; u 14 H = u 12 H u 34 H ;

где u 12 H , u 34 H — передаточные числа ступеней (с учетом знаков) при остановленном водиле.

На рис.10 приведены формулы для определения передаточных чисел планетарных механизмов. Передаточные числа между подвижным центральным колесом и водилом связаны соотношением:

u H 1 = 1 u 1 H .

Рис.10. Определение передаточных чисел планетарных механизмов

При выборе чисел зубьев колес планетарных зубчатых передач для них проверяются условия:

1. Условие соосности, обеспечивающее совпадение осей центральных зубчатых колес и водила: a w 12 = a w 34 (рис.10). Условия, приведенные на рис.10, получены для планетарных передач, зубчатые колеса которых имеют одинаковый модуль.

2. Условие соседства, обеспечивающее совместное размещение нескольких сателлитов по общей окружности в одной плоскости, без соприкосновения вершин зубьев соседних сателлитов:

sin π k > z c max +2 h a * z 1 + z 2

где z c max — максимальное число зубьев зубчатого венца сателлита, k — число сателлитов

Условие соседства получено для планетарных передач, у которых сателлиты располагаются равномерно по окружности водила.

3. Условие сборки зубчатых колес передачи, определяющее возможность сборки передачи при использовании нескольких сателлитов:

z 1 u 1 H k 1+ k П =Ц

где П- число полных поворотов водила 0,1,2,3. Ц- целое число 1,2,3, .

Макеты цилиндрических, конических, червячных, многоступенчатых и планетарных зубчатых механизмов.

Порядок выполнения работы

1. Получить задание и лабораторные макеты у преподавателя.

Каждый студент должен определить передаточное отношение и передаточное число пяти зубчатых передач:

1) цилиндрической зубчатой передачи;

2) конической зубчатой передачи;

3) зубчатой передачи со скрещивающимися осями;

4) многоступенчатой передачи с неподвижными осями колес;

5) планетарной зубчатой передачи.

2. Для каждой передачи:

2.1. Нарисовать кинематическую схему.

2.2. Дать полное название зубчатой передачи (определить ее тип и вид). Например, механизм, показанный на рис.7, называется цилиндрическая косозубая эвольвентная зубчатая передача.

2.3. Определить подвижность передачи по формуле Малышева для плоских механизмов.

2.4. Опытным путем определить передаточное отношение зубчатой передачи. Для этого посчитать число оборотов ведущего колеса соответствующее целому числу оборотов ведомого колеса.

2.5. Рассчитать передаточное число аналитически. Для чего посчитать числа зубьев колес передачи и по формулам найти передаточное число.

Для сложных зубчатых передач определить количество ступеней, указать паразитные колеса. Рассчитать передаточное число механизма, выразив его через числа зубьев колес.

2.6. Для планетарной передачи проверить выполнения условий соосности, соседства и сборки.

2.7. Составить сложную зубчатую передачу, соединив последовательно три из рассмотренных зубчатых передач. Нарисовать ее кинематическую схему и опредилить общее передаточное отношение.

2.8. Все результаты занести в отчет по лабораторной работе.

1. Перечислить звенья, входящие в простейшие зубчатые механизмы.

2. Перечислить звенья, входящие в сложные зубчатые механизмы.

3. Цель использования многоступенчатых передач.

4. Перечислить основные типы зубчатых передач.

5. Написать формулу для определения передаточного числа многоступенчатой зубчатой передачи.

6. Написать формулу для определения передаточного числа одноступенчатой зубчатой передачи.

7. В чем достоинства и недостатки прямозубых и косозубых зубчатых колес?

8. Чем планетарная зубчатая передача отличается от непланетарной ?

9. Зачем устанавливают несколько сателлитов в планетарном механизме?

10. Как определить передаточное число планетарной зубчатой передачи?

11. Какие условия проверяются для планетарной передачи? В чем их смысл?

12. Когда учитываются знаки передаточных чисел ступеней зубчатой передачи?

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

Одной из важнейших кинематических характеристик в теории механизмов и машин является передаточное отношение. Оно позволяет определить, на какую величину возрастает момент приложенной силы, когда происходит передача вращения от одной детали к другой. На практике для решения различных технических задач механизмы создаются с кинематической схемой, имеющей постоянное или переменное передаточное отношение.

Общее определение

Значение передаточного отношения у кинематических схем рассчитывается по стандартному математическому выражению. Результат получается при проведении математической операции деления значения угловой скорости ведущего вала или шестерёнки, на такой же параметр ведомого вала. Вместо этих значений используют отношение их частот вращения.

Современные кинематические схемы реализованы с использованием следующих механических соединений:

  • с зубчатым зацеплением (в разных вариациях);
  • червячных;
  • фрикционных соединений;
  • с помощью цепей;
  • посредством специальных ремней;
  • планетарных соединений.

Передача вращения основана на двух физических принципах: с помощью силы трения, с использованием механизмов зацепления. В зависимости от решаемой задачи механизмы изготавливаются с замедлением и ускорением. Первые называются редукторами, вторые — мультипликаторами. Обе разновидности бывают одноступенчатыми, двухступенчатыми, многоступенчатыми.

Пространственное расположение осей определяет следующие виды механизмов:

  • параллельные (в них оба вала расположены параллельно друг относительно друга);
  • пересекающиеся (зацепление происходит посредством пересечения);
  • перекрещивающиеся механизмы (у них валы вступают в перекрестное зацепление).

Все типы механизмов бывают замедляющие и ускоряющие движение. Наиболее частое применение замедляющих конструкций объясняется более высокой скоростью используемых двигателей и необходимостью увеличить мощность выходного элемента кинематической схемы.

В зависимости от соотношения скоростей возникает вопрос: может ли передаточное отношение быть отрицательным? Этот коэффициент является отношением величин имеющих только положительные значения. Он не может быть отрицательным. В зависимости от отношения числителя к знаменателю результат получиться больше единицы или меньше. В первом случает, он справедлив для редукторов, во втором для мультипликаторов.

Таблица передаточных отношений является сводным документом. В ней приведены значения основных технических характеристик всех типов кинематических соединений.

В сводной таблице можно найти зависимость значения передаточного числа от допустимой мощности, которая передаётся конкретным видом соединения.

Читайте также:  Машинка шаблон для вырезания

Зубчатая передача

Это механическое соединение двух или более вращающихся валов при помощи специальных колёс, на поверхности которых выточены зубья. Такой тип подразделяется по следующим характеристикам:

  • форме и типу зубьев;
  • относительному расположению валов в корпусе;
  • расчётной скорости вращения колёс;
  • степени защиты от внешних воздействий.

Важную роль в понимании работы всего механизма играет передаточное отношение зубчатой передачи. Его вычисляют, используя классическое выражение. Оно находится с подстановкой различных параметров. Например, подсчитывая численность изготовленных зубьев на ведущем и ведомом колесе. Формула позволяет получать результаты с высокой степенью точности:

Где i12 — передаточное отношение от звена 1 к звену 2 (звено 1 — ведущее, звено 2 — ведомое; d1,d2 — диаметры звеньев; z1, z2 — количество зубьев звеньев (если таковые имеются); M1, M2 — крутящие моменты звеньев; ω1, ω2 — угловые скорости звеньев; n1, n2 — частоты вращения звеньев.

В большей степени он зависит от количества зубьев расположенных на шестерёнке. Существенным достоинством зубчатого соединения является постоянство расчётного и реального передаточного отношения. Она связано с отсутствием эффекта проскальзывания.

Существенное влияние на величину этого показателя оказывает применяемое количество шестерней и число зубчатых колёс.

Для цилиндрической передачи этот параметр кроме приведенных выше параметров зависит от межосевого расстояния. Цилиндрические зубчатые передачи распространены в различных агрегатах легковых и грузовых автомобилей, тракторов, сельскохозяйственной техники. Их активно используют в трансмиссии.

Зубчатая передача обладает самым большим коэффициентом передачи мощности. Она способна отдавать мощность до 4500 кВт с передаточным числом достигающим 6,3.

Распространение получили зубчатые конструкции конического типа. Они обладают ортогональным сочленением. Расчёт конической передачи предполагает учёт таких параметров как: делительные диаметры, углы конусов, количество зубьев.

Для получения поступательного движения применяется реечное соединение. Конструктивно она состоит из шестерёнки, рейки с нанесёнными зубьями. Для реечной передачи учитывают диаметр окружности и количество зубьев на колесе, число зубьев расположенных на рейке.

Планетарная передача

Широко применяется так называемая планетарная кинематическая схема. Она представляет собой механизм, предназначенный для передачи, преобразования вращательного движения. С этой целью используются зубчатые колеса, расположенные на перемещающейся оси. Конструктивными элементами являются: центральные зубчатые колеса, закреплённые на неподвижных осях, боковые зубчатые колеса (расположены на перемещающихся осях). Для обеспечения наилучшего эффекта планетарные механизмы изготовляются на параллельных осях.

Максимальное значение передаточного числа достигает 9 единиц.

Коэффициент полезного действия достаточно высокий. Его значение приближается к 0,98. Наиболее распространёнными являются конструкции, в которых применяются нескольких сателлитов. Их располагают с угловыми шагами равной величины.

Такие конструкции выполняются с постоянным или переменным передаточным отношением. Некоторые из них имеют возможность регулировки этого параметра. Они разработаны обратимыми и необратимыми. В обратимых образцах предусмотрено движение в прямом и обратном направлении. В необратимых конструкциях такое движение невозможно. Изменение передаточного отношения бывает ступенчатым или бесступенчатым. Ярким представителем первого агрегата является механическая коробка передач автомобиля. Второй вариант применяется в вариаторах.

Рассмотренные передаточные отношения передач рассчитываются на этапе проектирования агрегата при выборе кинематической схемы. С их помощью производится выбор типа соединения, определяется эффективность. Оценивается надёжность всего механизма.

Цепная передача

Хорошо известна цепная передача. Она относится к гибким конструкциям. Передаточное отношение цепной передачи рассчитывается расчёту зубчатых систем. Ведущая и ведомая звёздочка рассматриваются как зубчатые колеса. Значение этого параметра достигает 15.

Особенностью такой конструкции считается требование иметь определённое провисание цепи. Настройка этого параметра проводится с помощью специального регулирующего винта.

Достоинства подобного соединения сводятся к следующему:

  • низкая критичность к возможным ошибкам при установке валов.
  • передача мощности производится с использованием нескольких звездочек;
  • длина передачи вращения может быть достаточно большой.

К недостаткам можно отнести быстрый износ соединительных элементов цепи. Это требует периодической смазки. Вторым недостатком считается высокий уровень шума.

Кроме передаточного числа для них рассчитывается величина статистической разрушающей силы. Этот параметр зависит от требуемого коэффициента безопасности. Его задают в интервале от 6 до 10. Он обеспечивает качественную работу всего механизма, высокую надёжность соединения и долговечность.

Червячная передача

Необходимость изменения вращательного движения под углом требует создания специального вида систем. К таким конструкциям относится червячная передача. Основной элемент такой передачи может быть цилиндрической формы, глобоидным, эвольвентным, архимедовым винтом. Это зависит от поверхности, на которой расположена резьба, и профиля резьбы.

В качестве параметров, используемых для расчёта передаточного числа подставляемых в выражение, используют существующее количество заходов червячного механизма. Обычно оно варьируется от одного до четырёх. Таблица передаточных отношений для червячной схемы позволяет рассчитать необходимое количество элементов зацепления. Приведенные в этой таблице данные, помогают правильно выбрать соединения для конкретного механизма.

Основными недостатками передачи являются:

  • высокая температура нагрева элементов во время передачи вращения;
  • наличие эффекта проскальзывания;
  • затормаживание и заедание;
  • низкий КПД;
  • как следствие невысокую надёжность.

Ременная передача

Данная конструкция является часто встречающейся. Её тип определяется расположением вала и направлением движения ремня. Их классифицируют следующим образом:

  • открытого типа;
  • перекрестной формы;
  • ступенчатой системы;
  • угловой.

Для повышения надёжности применяют спаренное соединение. Реализация подобных конструкций производится с помощью ремней различного сечения. Наиболее популярными являются три типа: прямоугольные, в форме трапеции, круглого сечения.

Значение передаточного отношения рассчитывается подстановкой в классическую формулу скоростей вращения ведущего и ведомого валов. Иногда в расчёте используют число оборотов каждого из валов. В качестве альтернативного варианта при расчёте этого параметра используются величины диаметров (радиусов) шкивов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Добавить комментарий

14 − 8 =