Принятым обозначением кинематической вязкости является

Автомобили

h при 20°С, 10 -3 н · сек/м 2 или спз

Расплавленные металлы имеют В. того же порядка, что и обычные жидкости (рис. 2). Особыми вязкостными свойствами обладает жидкий гелий. При температуре 2,172 К он переходит в сверхтекучее состояние, в котором В. равна нулю (см. Гелий, Сверхтекучесть).

В. — важная физико-химическая характеристика веществ. Значение В. приходится учитывать при перекачивании жидкостей и газов по трубам (нефтепроводы, газопроводы). В. расплавленных шлаков весьма существенна в доменном и мартеновском процессах. В. расплавленного стекла определяет процесс его выработки. По В. во многих случаях судят о готовности или качестве продуктов или полупродуктов производства, поскольку В. тесно связана со структурой вещества и отражает те физико-химические изменения материала, которые происходят во время технологических процессов. В. масел имеет большое значение для расчёта смазки машин и механизмов и т.д.

Молекулярно-кинетическая теория объясняет В. движением и взаимодействием молекул. В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому В. газов определяется главным образом молекулярным движением. Между движущимися относительно друг друга слоями газа происходит постоянный обмен молекулами, обусловленный их непрерывным хаотическим (тепловым) движением. Переход молекул из одного слоя в соседний, движущийся с иной скоростью, приводит к переносу от слоя к слою определённого количества движения. В результате медленные слои ускоряются, а более быстрые замедляются. Работа внешней силы F, уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту.

В. газа не зависит от его плотности (давления), так как при сжатии газа общее количество молекул, переходящих из слоя в слой, увеличивается, но зато каждая молекула менее глубоко проникает в соседний слой и переносит меньшее количество движения (закон Максвелла). Для В. идеальных газов в молекулярно-кинетической теории даётся следующее соотношение:

Принятым обозначением кинематической вязкости является

где m — масса молекулы, n — число молекул в единице объёма, Принятым обозначением кинематической вязкости является— средняя скорость молекул и l — длина свободного пробега молекулы между двумя соударениями её с другими молекулами. Так как Принятым обозначением кинематической вязкости являетсявозрастает с повышением температуры Т (несколько возрастает также и l ), то В. газов увеличивается при нагревании (пропорционально Принятым обозначением кинематической вязкости является). Для очень разреженных газов понятие В. теряет смысл.

В жидкостях, где расстояния между молекулами много меньше, чем в газах, В. обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нём полости, достаточной для перескакивания туда молекулы. На образование полости (на «рыхление» жидкости) расходуется так называемая энергия активации вязкого течения. Энергия активации уменьшается с ростом температуры и понижением давления. В этом состоит одна из причин резкого снижения В. жидкостей с повышением температуры (рис. 3) и роста её при высоких давлениях. При повышении давления до нескольких тыс. атмосфер h увеличивается в десятки и сотни раз. Строгая теория В. жидкостей, в связи с недостаточной разработанностью теории жидкого состояния, ещё не создана. На практике широко применяют ряд эмпирических и полуэмпирических формул В., достаточно хорошо отражающих зависимость В. отдельных классов жидкостей и растворов от температуры, давления и химического состава.

В. жидкостей зависит от химической структуры их молекул. В рядах сходных химических соединений (насыщенные углеводороды, спирты, органические кислоты и т.д.) В. изменяется закономерно — возрастает с возрастанием молекулярной массы. Высокая В. смазочных масел объясняется наличием в их молекулах циклов (см. Циклические соединения, Нафтены). Две жидкости различной В., которые не реагируют друг с другом при смешивании, обладают в смеси средним значением В. Если же при смешивании образуется химическое соединение, то В. смеси может быть в десятки раз больше, чем В. исходных жидкостей. На этом основано применение измерений В. в качестве метода физико-химического анализа.

Возникновение в жидкостях (дисперсных системах или растворах полимеров) пространственных структур, образуемых сцеплением частиц или макромолекул, вызывает резкое повышение В. При течении «структурированной» жидкости работа внешней силы затрачивается не только на преодоление истинной (ньютоновской) В., но и на разрушение структуры (см. Реология).

Для нормальных вязких жидкостей между количеством жидкости Q, протекающей в единицу времени через капилляр, и давлением p существует прямая пропорциональность (см. Пуазёйля закон). Течение структурированных жидкостей не подчиняется этому закону, для них кривые зависимости Q от р выпуклы к оси давления (рис. 4), что объясняется непостоянством h . Аномальной В., характерной для структурированных жидких систем, обладают важнейшие биологические среды — цитоплазма и кровь.

Вязкость биологических сред определяется в большинстве случаев структурной вязкостью. В. жидкого содержимого клетки-цитоплазмы связана со структурой составляющих её биополимеров и субклеточных образований, что вызывает отклонения (характера тиксотропии) вязкого течения от ньютоновского закона нормальных жидкостей. Методы измерения В. биологических сред — наблюдение скорости перемещения гранул при центрифугировании или железных опилок в магнитном поле, измерение среднего смещения броуновских частиц (см. Броуновское движение). Абсолютная вязкость цитоплазмы колеблется от 2 до 50 спз (1 спз = 10 -3 н · сек/м 2 ), она меняется в различных частях клетки и в разные периоды клеточного цикла. С понижением температуры ниже 12—15°С и при повышении её свыше 40—50°С вязкость цитоплазмы увеличивается. При воздействии облучения наблюдается сначала уменьшение вязкости, а затем, при увеличении дозы, — её возрастание.

Читайте также:  Автомобили лифан х50 отзывы владельцев

Вязкость ликвора, лимфы и плазмы крови достаточно точно описывается ньютоновским законом вязкого течения, она исследуется в капиллярных или цилиндрических вискозиметрах. Кровь — неньютоновская жидкость, так как содержит структурированные компоненты — белки и клетки крови, её вязкость у человека в норме 4—5 спз, при патологии колеблется от 1,7 до 22,9 спз, что отражается в реакции оседания эритроцитов (РОЭ).

Лит.: Гaтчек Э., Вязкость жидкостей, пер. с англ., 2 изд., М. — Л., 1935; Труды совещания по вязкости жидкостей и коллоидных растворов, т. 1—3, М. — Л., 1941—45; Френкель Я. И., Кинетическая теория жидкостей, М. — Л., 1945; Фукс Г. И., Вязкость и пластичность нефтепродуктов, М., 1956; Голубев И. Ф., Вязкость газов и газовых смесей, М., 1959; Справочник химика, 2 изд., т. 1, Л. — М.,1963; Руководство по цитологии, т. 1—2, М. — Л., 1965—66; Heilbrunn L. V. The viscosity of protoplasm, W., 1958.

Принятым обозначением кинематической вязкости является

Рис. 4. Зависимость количества жидкости Q, протекающей через капилляр в 1 сек, от давления p для нормальных (ньютоновских) и аномальных (неньютоновских) жидкостей.

Принятым обозначением кинематической вязкости является

Рис. 2. Вязкость некоторых расплавленных металлов в спз.

Принятым обозначением кинематической вязкости является

Рис. 1. Схема однородного сдвига (вязкого течения) слоя жидкости, заключенного между двумя твердыми пластинками площадью S, из которых нижняя (А) неподвижна, а верхняя (В) под действием тангенциальной силы F движется с постоянной скоростью v; v(z) — зависимость скорости слоя от его расстояния z от неподвижной пластинки; D x — величина начального сдвига жидкости.

Принятым обозначением кинематической вязкости является

Рис. 3. Измерение вязкости некоторых смазочных масел в зависимости от температуры ( h дана в пз).

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

ПлотностьМолекулярная массаДНПКритические параметрыВязкостьПоверхностное натяжение
Фактор сжимаемостиЛетучесть (фугитивность)Оптические свойстваЭлектрические свойства

Понятие вязкости

Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.

Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.

[μ], или внутренним трением, называют свойства реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Очевидно, это свойство проявляется при движении жидкости. Динамическая вязкость в системе СИ измеряется в [Н·с/м 2 ]. Это сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев поверхностью 1 м 2 , находящихся на расстоянии 1 м друг от друга и перемещающихся под действием внешней силы в 1 Н со скоростью 1 м/с. Учитывая, что 1 Н/м 2 = 1 Па, динамическую вязкость часто выражают в [Па·с] или [мПа·с]. В системе СГС (CGS) размерность динамической вязкости – [дин·с/м 2 ]. Эта единица называется пуазом (1 П = 0,1 Па·с).

Переводные множители для расчета динамической [μ] вязкости.

ЕдиницыМикропуаз (мкП)Сантипуаз (сП)Пуаз ([г/см·с])Па·с ([кг/м·с])кг/(м·ч)кг·с/м 2
Микропуаз (мкП)110 -410 -610 73,6·10 -41,02·10 -8
Сантипуаз (сП)10 4110 -210 -33,61,02·10 -4
Пуаз ([г/см·с])10 610 2110 33,6·10 21,02·10 -2
Па·с ([кг/м·с])10 710 3101 33,6·10 31,02·10 -1
кг/(м·ч)2,78·10 32,78·10 -12,78·10 -32,78·10 -412,84·10 -3
кг·с/м 29,81·10 79,81·10 39,81·10 29,81·10 13,53·10 41

[ν] называется величина, равная отношению динамической вязкости жидкости [μ] к ее плотности [ρ] при той же температуре: ν = μ/ρ. Единицей кинематической вязкости является [м 2 /с] – кинематическая вязкость такой жидкости, динамическая вязкость которой равна 1 Н·с/м 2 и плотность 1 кг/м 3 (Н = кг·м/с 2 ). В системе СГС (CGS) кинематическая вязкость выражается в [см 2 /с]. Эта единица называется стоксом (1 Ст = 10 -4 м 2 /с; 1 сСт = 1 мм 2 /с).

Переводные множители для расчета кинематической [ν] вязкости.

Единицымм 2 /с (сСт)см 2 /с (Ст)м 2 /см 2 /ч
мм 2 /с (сСт)110 -210 -63,6·10 -3
см 2 /с (Ст)10 2110 -40,36
м 2 /с10 610 413,6·10 3
м 2 /ч2,78·10 22,782,78·10 41

Нефти и нефтепродукты часто характеризуются , за которую принимается отношение времени истечения через калиброванное отверстие стандартного вискозиметра 200 мл нефтепродукта при определенной температуре [t] ко времени истечения 200 мл дистиллированной воды при температуре 20°С. Условная вязкость при температуре [t] обозначается знаком ВУ, и выражается числом условных градусов.

Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).

Перевести вязкость из одной системы в другую можно при помощи номограммы.

В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:

Принятым обозначением кинематической вязкости является

Для углеводородов вязкость существенно зависит от их химического состава: она повышается с увеличением молекулярной массы и температуры кипения. Наличие боковых разветвлений в молекулах алканов и нафтенов и увеличение числа циклов также повышают вязкость. Для различных групп углеводородов вязкость растет в ряду алканы – арены – цикланы.

Для определения вязкости используют специальные стандартные приборы – вискозиметры, различающиеся по принципу действия.

Читайте также:  Как выкрутить свечу зажигания если она сломалась

Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).

Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.

Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:

    для ν от 1 до 120 мм 2 /с:

Принятым обозначением кинематической вязкости является

Принятым обозначением кинематической вязкости является

Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t.

Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).

Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.

Зависимость вязкости от температуры

Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).

Принятым обозначением кинематической вязкости является

С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.

Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.

Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:

Принятым обозначением кинематической вязкости является

Дважды логарифмируя это выражение, получаем:

Принятым обозначением кинематической вязкости является

Принятым обозначением кинематической вязкости является

По данному уравнению Е. Г. Семенидо была составлена номограмма на оси абсцисс которой для удобства пользования отложена температура, а на оси ординат – вязкость.

По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.

Принятым обозначением кинематической вязкости является

Для нефтяных смазочных масел очень важно при эксплуатации, чтобы вязкость как можно меньше зависела от температуры, поскольку это обеспечивает хорошие смазывающие свойства масла в широком интервале температур, т. е. в соответствии с формулой Вальтера это означает, что для смазочных масел, чем ниже коэффициент В, тем выше качество масла. Это свойство масел называется индексом вязкости, который является функцией химического состава масла. Для различных углеводородов по-разному меняется вязкость от температуры. Наиболее крутая зависимость (большая величина В) для ароматических углеводородов, а наименьшая – для алканов. Нафтеновые углеводороды в этом отношении близки к алканам.

Существуют различные методы определения индекса вязкости (ИВ).

Принятым обозначением кинематической вязкости является

Для всех масел с ν100 2 /с вязкости (ν, ν1 и ν3) определяют по таблице ГОСТ 25371-97 на основе ν40 и ν100 данного масла. Если масло более вязкое (ν100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.

Значительно проще определять индекс вязкости по номограммам.

Индекс вязкости – общепринятая величина, входящая в стандарты на масла во всех странах мира. Недостатком показателя индекса вязкости является то, что он характеризует поведение масла лишь в интервале температур от 37,8 до 98,8°С.

Принятым обозначением кинематической вязкости является

Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:

Принятым обозначением кинематической вязкости является

Принятым обозначением кинематической вязкости является

В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.

Масло с неразрушенной структурой имеет значительно большую вязкость, чем после ее разрушения. Если понизить вязкость такого масла путем разрушения структуры, то в спокойном состоянии эта структура восстановится и вязкость примет первоначальное значение. Способность системы самопроизвольно восстанавливать свою структуру называется . С увеличением скорости течения, точнее градиента скорости (участок кривой 1), структура разрушается, в связи с чем вязкость вещества снижается и доходит до определенного минимума. Этот минимум вязкости сохраняется на одном уровне и при последующем возрастании градиента скорости (участок 2) до появления турбулентного потока, после чего вязкость вновь нарастает (участок 3).

Зависимость вязкости от давления

Принятым обозначением кинематической вязкости является

Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.

Читайте также:  Машина фольксваген каравелла фото

Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:

Принятым обозначением кинематической вязкости является

В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.

При давлениях порядка 500 – 1000 МПа вязкость масел возрастает настолько, что они теряют свойства жидкости и превращаются в пластичную массу.

Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:

Принятым обозначением кинематической вязкости является

На основе этого уравнения Д.Э.Мапстоном разработана номограмма, при пользовании которой известные величины, например ν и Р, соединяют прямой линией и отсчет получают на третьей шкале.

Вязкость смесей

При компаундировании масел часто приходится определять вязкость смесей. Как показали опыты, аддитивность свойств проявляется лишь в смесях двух весьма близких по вязкости компонентов. При большой разности вязкостей смешиваемых нефтепродуктов, как правило, вязкость меньше, чем вычисленная по правилу смешения. Приближенно вязкость смеси масел можно рассчитать, если заменить вязкости компонентов их обратной величиной – подвижностью (текучестью) ψсм:

Принятым обозначением кинематической вязкости является

Для определения вязкости смесей можно также пользоваться различными номограммами. Наибольшее применение нашли номограмма ASTM и вискозиграмма Молина-Гурвича. Номограмма ASTM базируется на формуле Вальтера. Номограмма Молина-Гуревича составлена на основании экспериментально найденных вязкостей смеси масел А и В, из которых А обладает вязкостью °ВУ20 = 1,5, а В – вязкостью °ВУ20 = 60. Оба масла смешивались в разных соотношениях от 0 до 100% (об.), и вязкость смесей устанавливалась экспериментально. На номограмме нанесены значения вязкости в уел. ед. и в мм 2 /с.

Вязкость газов и нефтяных паров

Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:

Принятым обозначением кинематической вязкости является

Принятым обозначением кинематической вязкости является

Для приближенных расчетов принимаем, что С = 1,22·Ткип. Более точные значения С и m.

Для расчета вязкости индивидуальных углеводородных газов применяется формула:

Принятым обозначением кинематической вязкости является

Вязкость газов, нефтяных паров можно определить по графическим зависимостям:

Принятым обозначением кинематической вязкости является

Вязкость природных газов известной молекулярной массы или относительной плотности (по воздуху) при атмосферном давлении и заданной температуре может быть определена по кривым, представленным на рисунке.

Как видно из рисунка, с повышением относительной плотности и понижением температуры вязкость газа уменьшается.

Вязкость газов мало зависит от давления в области до 5-6 МПа. При более высоких давлениях она растет и при давлении около 100 МПа увеличивается в 2-3 раза по сравнению с вязкостью при атмосферном давлении. Для определения вязкости при повышенных давлениях пользуются эмпирическими графиками.

Вязкостью называется свойство жидкости сопротивляться внешнему воздействию благодаря внутреннему трению, возникающему между слоями.

Для определения вязкости существует два основных параметра: динамическая вязкость и кинематическая вязкость, которые связаны между собой соотношением:

Принятым обозначением кинематической вязкости является

Где ν – кинематическая вязкость, м 2 /с;

µ – динамическая вязкость, Па*с;

ρ – плотность жидкости, кг/м 3 .

Между слоями жидкости, движущимися друг относительно друга, возникает сила. Эта сила прямо пропорциональна скорости движения и площади соприкосновения.

В 1687 году И. Ньютоном был установлен закон вязкого течения жидкости:

Принятым обозначением кинематической вязкости является

где τ – касательные напряжения;

Коэффициент пропорциональности µ и назвали динамической вязкостью жидкости.

Динамическая и кинематическая вязкости зависят от температуры рабочей среды. Причем для газов и жидкостей эта зависимость различна. Это связано с различием во взаимодействии молекул. Для капельных жидкостей оба коэффициента убывают с возрастанием температуры.

Принятым обозначением кинематической вязкости является

Для определения вязкости используются специальные приборы – вискозиметры (U-образная стеклянная трубка). Одно из колен вискозиметра содержит впаянный капилляр, который оканчивается шариком. Под шариком и над ним нанесены метки, которые ограничивают определенный объем.

Для определения вязкости жидкости необходимо выбрать эталонную жидкость, вязкость которой является известной величиной. Для определения вязкости рабочей жидкости используется формула:

Принятым обозначением кинематической вязкости является

где µ – вязкость рабочей жидкости;

µ – вязкость эталонной жидкости;

t – время истечения через капилляр исследуемой жидкости;

t – время истечения через капилляр эталонной жидкости;

ρ – плотность исследуемой жидкости;

ρ – плотность эталонной жидкости.

Так же существует понятие условной вязкости. Это отношение времени истечения через вискозиметр испытуемой жидкости при рабочей температуре к времени истечения дистиллированной воды при температуре 20°С (водное число). Водное соотношение является постоянной величиной для каждого прибора. Это соотношения выражается условными градусами.

Принятым обозначением кинематической вязкости является

где ВУ – условная вязкость;

Еще один метод определения вязкости жидкости – метод Стокса.

Принятым обозначением кинематической вязкости является

Он заключается в бросании различных шариков в жидкость и измерении скорости их падения. На шарик действуют три силы: сила тяжести, выталкивающая сила и сила сопротивления окружающей среды.

Принятым обозначением кинематической вязкости является

где Fтяж – сила тяжести;

m – масса шарика;

r – радиус шарика;

ρш – плотность шарика.

Принятым обозначением кинематической вязкости является

где FA – выталкивающая сила.

Принятым обозначением кинематической вязкости является

где Fc – сила сопротивления окружающей среды;

ϑ – скорость движения шарика.

Принятым обозначением кинематической вязкости является

Подставив выражения для сил, действующих на шарик в итоговое уравнение, можно найти вязкость жидкости:

Добавить комментарий

два × четыре =