Схема трансформаторного зарядного устройства

Автомобили

Схема трансформаторного зарядного устройства

Всем привет, сегодня опять речь пойдёт о зарядных устройствах и поскольку многим надоели всякие импульсные схемы источников питания, покажу я вам довольно универсальную, простую и мега надежную схему зарядного устройства, которую собирали еще наши деды.

Схемка сейчас перед вами

Схема трансформаторного зарядного устройства

Суровый железный трансформатор, пара мощных тиристоров и узел регулировки. Кстати метод регулировки тут фаза-импульсный, а не линейный. За счет этого кпд схемы довольно высокая.

Тиристоры являются регулирующим звеном и одновременно выпрямителем, поэтому тут нет дополнительного диодного выпрямителя, а это большой плюс.

Схема трансформаторного зарядного устройства

Схемы подобного класса практически резиновые, взял более мощный трансформатор, поставил тиристоры помощнее и всё, готово пуско-зарядное устройство.

Ну а теперь по традиции давайте посмотрим как это работает…

Линейный и ШИМ метод регулировки мощности вам прекрасно известен, но в случае тиристоров не все так просто, тут нужен совсем иной принцип регулировки.

В случае линейного метода регулировки, который не применим к тиристорам, мощность регулируется за счет того, что регулирующий элемент, как правило транзистор. В зависимости от величины управляющего сигнала изменяет сопротивление открытого перехода линейно от 1 до 100%, чем больше приоткрыт транзистор, тем меньше сопротивление его перехода, а следовательно больше тока он пропускает и больше мощности будет на выходе.

В случаи с ШИМ метода регулировки транзистор либо полностью открыт,

Схема трансформаторного зарядного устройства

когда на его управляющий вывод подаётся высокий уровень сигнала, либо полностью закрыт,

Схема трансформаторного зарядного устройства

если на управляющий вывод подается низкий уровень.

Притом регулировка мощности осуществляется за счет времени нахождения транзистора в одном из двух состояний, чем больше времени транзистор открыт, тем больше мощность и наоборот.

Этот метод самый экономичный, так как транзистор работает в ключевом режиме, когда в открытом состоянии сопротивление его перехода ну или канала — минимально, поэтому нагрев на нём практически отсутствует. Отсюда и очень высокий КПД.

В случаи тиристоров не всё так просто… Тиристор это не транзистор и указанные два метода к нему можно сказать не применимы.

Тиристор без проблем можно открыть подавая сигнал на управляющий электрод, но закрыть его принудительно практически невозможно, закроется он только тогда, когда с силовых выводов снимается напряжение.

В цепи переменного тока это происходит автоматически, когда напряжение, проходит через нулевую точку.

Схема трансформаторного зарядного устройства

Наиболее популярный метод управления тиристором фазо-импульсный принцип регулировки с помощью так называемых релаксационных генераторов.

Генератор может находиться в двух состояниях, на его выходе, либо есть управляющий импульс, либо его нет, величина этого импульса и длительность не меняется. Можно изменять только количество импульсов за единицу времени или чистоту.

В нашей схеме релаксационный генератор построен на базе двух транзисторов и по сути является аналогом однопереходного транзистора, ну или динистор.

Схема трансформаторного зарядного устройства

Время срабатываний задается номиналами указанных резисторов и конденсатора, работает все это дело простым образом.

Схема трансформаторного зарядного устройства

Через маломощный диодный выпрямитель от силовой обмотки трансформатора, либо от дополнительной маломощной, переменное напряжение выпрямляется в постоянку и поступает на схему генератора. В цепи питания имеется стабилитрон для стабилизации питающего напряжения генератора, через цепочку резисторов заряжается конденсатор и как только напряжение на нём доходит до некоторого значения, генератор сработает, на его выходе образуется отпирающее для тиристора напряжение. Конденсатор разряжается, импульс пропадает и дальше процесс повторяется заново.

Схема трансформаторного зарядного устройства

Переменным резистором мы можем уменьшить или увеличить время заряда конденсатора, а следовательно и количество управляющих импульсов за единицу времени, а если попроще, просто меняем частоту импульсов.

Управляются тиристоры через разделительный трансформатор,

Схема трансформаторного зарядного устройства

на самом деле есть много способов управления, через диоды или транзисторы, но в моем случае задействован именно трансформатор, так как в дальнейшем я собираюсь поэкспериментировать регулировку на в ходе по высоковольтной части, а трансформатор обеспечивает гальваническую развязку, вы же можете воспользоваться другими способами управления.

Схема трансформаторного зарядного устройства

Трансформатор имеет две вторичные обмотки, именно они управляют тиристорами, при наличии управляющего импульса тиристор сработает, закроется он только при прохождении тока через нулевую точку.

Схема трансформаторного зарядного устройства

Мы можем открыть тиристор в любой точке полуволны, если мы его открыли в начале полуволны, то естественно через него будет проходить больше тока, если в середине меньше, если в конце то еще меньше.

Фактически тиристор будет обрезать синусоиду пропуская на выход только её части, чем меньше кусок синусоиды, тем меньше мощность на выходе, это если предельно простым и понятным языком надеюсь принцип понятен.

Ну а теперь переходим к компонентом, в принципе с генератором думаю проблем не возникнут, номиналы компонентов не критичны, можно отклонять в ту или иную сторону процентов на 30.

Схема трансформаторного зарядного устройства

Собран генератор на компактной, печатной плате и её можно скачать в конце статьи.

Схема трансформаторного зарядного устройства

Трансформатор в моём случае намотан на жёлто-белом колечке от фильтра групповой стабилизации компьютерного блока питания, размеры трансформатора сейчас перед вами

  • Схема трансформаторного зарядного устройства
  • Схема трансформаторного зарядного устройства
  • Схема трансформаторного зарядного устройства

Вначале я намотал вторичные обмотки, 2 по 90 витков проводом 0,31 миллиметр, стараемся мотать аккуратно без перехлёстов, равномерно растягивая витки по всему кольцу, поверх мотаем еще 90 витков — это у нас первичная обмотка.

  • Схема трансформаторного зарядного устройства
  • Схема трансформаторного зарядного устройства

В моём случае, управляющие или вторичные обмотки, залил эпоксидной смолой, затем только намотал первичную. Это сделано для безопасности, поскольку, как уже сказал ранее мой трансформатор экспериментальной и в дальнейшем будет управлять тиристорами, которые работают непосредственно в сетевой части.

Схема трансформаторного зарядного устройства

Тут замечу, что в итоге управляющие обмотки этого трансформатора я всё таки спалил вместе с менее мощными тиристорами на 10 ампер во время погони за большим выходным током, так что жадность фраера всё же губит, поэтому процедуру намотки трансформатора пришлось повторить заново. Сердечник из того же материала но размеры чуть меньше.

Для заливки трансформатора я применяю китайскую, эпоксидную смолу, сохнет полностью где-то за 20 минут.

Схема трансформаторного зарядного устройства

За это время нужно будет повертеть трансформатор в руках для равномерного распределения смолы по всему сердечнику, тут главное не перестараться, смолы не должно быть слишком много, иначе получится неаккуратно.

Схема трансформаторного зарядного устройства

Можно использовать смолу любого цвета, трансформаторы залитые таким образом получаются предельно надежными и очень красивыми.

Читайте также:  Блок стеклоподъемников ниссан ноут

После намотки первичной обмотки, всё дополнительно покрыл лаком, но это делать необязательно.

Схема трансформаторного зарядного устройства

Ещё пару слов об управляющих обмотках, полностью равноценные и мотаются разом, они должны обеспечить достаточное напряжение и ток для отпирания тиристоров, напряжение можно посмотреть осциллографом.

Важно не перепутать начала обмоток, на схеме они указаны точками.

Что касается характеристик схемы, именно мой вариант может обеспечить зарядный ток до 12-13 ампер, но можно получить хоть 200, хоть 500 ампер, если силовые компоненты, тиристоры и трансформатор, позволят этому.

Несколько слов о компонентах, недавно в очередной раз посещал местную барахолку и просто не мог, не купить этих зеленых монстров, это довольно мощные, силовые тиристоры напоминающие о былом величии советского союза, да уж не жалели тогда материала.

Схема трансформаторного зарядного устройства

Тиристоры всего на 25 ампер, но посмотрите на сечении силового провода, он и сотню ампер пропустит и не шелохнется, естественно для этого тиристора 25 ампер далеко не предел. Тиристоров нужно два штуки.

Теперь о трансформаторе, в моём случае вот такой — это накальный трансформатор с мощностью около 200 ватт, но и он способен на большее.

Схема трансформаторного зарядного устройства

Вторичных обмоток 4, обмотки по 6,3 вольта с током 8-9 ампер, правда ток одной из обмоток чуть поменьше, чем у остальных, но ничего прорвёмся.

Схема трансформаторного зарядного устройства

Из-за особенностей такого типа выпрямителя, трансформатор нужен с двумя одинаковыми обмотками, которые соединяются со средней точкой, при том итоговое выходное напряжение или напряжение заряда, будет не больше напряжения одного из плеч, минус потеря на тиристоре.

Схема трансформаторного зарядного устройства

Поэтому если зарядку делаете для АКБ легкового автомобиля, желательно использовать обмотки по 20 вольт. Для этого трансформатор единственное, логичное подключение обмоток с учётом ситуации показано на рисунке

Схема трансформаторного зарядного устройства

все обмотки последовательно с отводом от средней точки, но загвоздка в том, что итоговое выходное напряжение будет около 12,6 вольт, этого не достаточно для зарядки аккумуляторов, но транс рассчитан для работы в сетях 220 вольт, а у нас в розетке уже давно 230-240 вольт, то есть и выходное напряжение будет побольше, а если точнее 28 вольт суммарно или около 14 вольт в плече.

Схема трансформаторного зарядного устройства

Чуть меньше, чем нужно.

Тиристоры удобно установить на общий радиатор, так как их аноды по схеме общие.

Схема трансформаторного зарядного устройства

Силовые провода стоит использовать с приличным сечением. Не забываем изолировать все соединения.

В конце я нашёл стрелочную, измерительную головку от древнего мультиметра и подумал использовать её в качестве амперметра, шунты также были в наличии, мне тут сказочно повезло, потому что не пришлось ничего рассчитывать и настраивать.

Схема трансформаторного зарядного устройства

С применением шунта 50 ампер, 75 милливольт самая нижняя шкала очень точно показывает ток до 30 ампер.

Притащил из подвала всеми любимый мультиметр))),

Схема трансформаторного зарядного устройства

он будет показывать нам напряжение на выходе зарядного устройства, вся шкала 15 вольт.

Чуть не забыл все замеры делаются под нагрузкой, иначе мультиметры сойдут с ума.

Теперь к делу, первый запуск схемы, как всегда делаем через страховочную ограничительную лампу, если все заработает как надо, не забываем установить предохранители по входу и выходу. Всё готово, нагрузка у нас лампа накаливания соответствующего периода.

Пробуем и видим, как ток регулируется и регулируется довольно плавно, 12,13 ампер с такого транса снять можно, можно естественно и больше, но будут просадки и возможен перегрев.

Схема трансформаторного зарядного устройства

Тиристорам такие токи по барабану, они почти не греются, короткие замыкания при малых и средних токах схема терпит без проблем, мощность ограничивается, при запредельных туках трансформатору придётся несладко, поэтому предохранители обязательно ставить.

Минимальный выходной ток около 4 ампер, теперь проверим стабильность выходного напряжения в зависимости от изменений сетевого, выход зарядного устройства нагружен мало мощными лампами.

Об этом ранее указал и вот подтверждение, цифровой мультиметр показывает сетевое напряжение, стрелочный прибор выходной с зарядного устройства, изменение сетевого напряжения приводит к изменениям выходного и на практике вам нужно контролировать ток заряда.

Схема трансформаторного зарядного устройства

Это пожалуй основной недостаток таких зарядных устройств, а в целом все работает неплохо.

Недостатки... Современное, зарядное устройство заряжает аккумулятор стабильным током и напряжением, но в те времена никто не заморачивался с этим, нужно понимать, что это дубовое зарядное устройство, которое не будет контролировать напряжение на аккумуляторе и отключать питание при полном заряде АКБ.

Тут пользователь сам решает, каким током и в течение какого времени заряжать аккумулятор. Из-за указанного недостатка советую дополнить устройство узлом автоотключение аккумулятора при полном заряде. Схема подобного узла есть на сайте.

Так же нужно понимать, что отсутствуют всякие узлы защиты помимо предохранителей.

Схема трансформаторного зарядного устройства

Достоинства... Сверх надежная штука, чтобы спалить такую зарядку нужно очень постараться, схема некапризна, регулировка довольно плавная, высокая повторяемость, очень простая конструкция и низкая себестоимость, почти все комплектующие можно найти в старых запасах.

Довольно высокий КПД за счёт можно сказать импульсного принципа регулировки.

Немаловажный момент… Нет необходимости в дополнительном выпрямителе, сами тиристоры являются и регулирующим органам, и выпрямителем.

Совместно с надежным железным трансформатором, такая схема будет служить десятилетиями, а самое главное она универсальна и может быть использована для зарядки самых разных аккумуляторов.

Схема трансформаторного зарядного устройства

Ещё один момент, который я честно сказать не определился отнести к достоинствам или недостаткам, аккумулятор будет заряжаться пульсирующим током, многие говорят, что это даже полезно для аккумулятора, лично ничего сказать по этому поводу не могу.

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I – средний зарядный ток, А., а Q – паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

Читайте также:  Краш тест автокресел 2018

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Схема трансформаторного зарядного устройства

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 – Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Схема трансформаторного зарядного устройства

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 – VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Схема трансформаторного зарядного устройства

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.
Читайте также:  Светодиод на схеме где плюс

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

Схема трансформаторного зарядного устройства

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

1 схема мощного ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Добавить комментарий

1 + 6 =